|本期目录/Table of Contents|

[1]陈刚,苑宗敬,张鸿志,等.几何参数对三维仿生运动翼推进性能的影响研究[J].西安交通大学学报,2017,51(09):131-137.[doi:10.7652/xjtuxb201709019]
 CHEN Gang,YUAN Zongjing,ZHANG Hongzhi,et al.Influences of Geometric Parameters on the Propulsion Performance of ThreeDimensional Bionic Motion Wings[J].Journal of Xi'an Jiaotong University,2017,51(09):131-137.[doi:10.7652/xjtuxb201709019]
点击复制

几何参数对三维仿生运动翼推进性能的影响研究(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
131-137
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Influences of Geometric Parameters on the Propulsion Performance of
ThreeDimensional Bionic Motion Wings
作者:
陈刚123苑宗敬123张鸿志3韩佳坤123龚春林4
1.西安交通大学机械结构强度与振动国家重点实验室,710049,西安;2.西安交通大学航天航空
学院,710049,西安;3.西安交通大学陕西省先进飞行器服役环境与控制重点
实验室,710049,西安;4.西北工业大学航天学院,710072,西安
Author(s):
CHEN Gang123YUAN Zongjing123ZHANG Hongzhi3HAN Jiakun123GONG Chunlin4
1. State Key Laboratory of Strength and Vibration for Mechanic Structures, Xi’an Jiaotong University, Xi’an 710049, China;
2. School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China; 3. Shaanxi Key Laboratory of Service Environment
and Control for Flight Vehicles, Xi’an Jiaotong University, Xi’an 710049, China; 4. School of Astronautics, Northwestern
Polytechnical University, Xi’an 710072, China
关键词:
仿生运动翼浸入边界法格子玻尔兹曼法推进性能几何参数
Keywords:
bionic motion wing immersed boundary method lattice Boltzmann method
propulsion performance
geometric parameter
分类号:
V211
DOI:
10.7652/xjtuxb201709019
摘要:
为了研究几何参数对三维仿生运动翼推进性能的影响,基于IBLBM算法开发了可在天河2号超级计算机上运行的大规模并行求解器。实现过程包括用浸入边界法在翼型表面构造力函数,并通过插值函数将翼型表面的力函数分散到周围流体网格点,然后通过格子波尔兹曼方法进行流体计算,更新速度场。以椭球翼、平板翼、NACA0012翼、长方体翼为研究对象,系统研究了仿生翼的几何形状对推力系数与涡系结构的影响。研究表明:椭球翼表面的涡系结构饱满且距离翼型表面最近,其推进性能最好;NACA0012翼和平板翼的涡系结构类似,推进性能相近;长方体翼由于钝体效应导致涡系结构细小且距离翼型表面较远,其推进性能最差。研究结果表明,在仿生飞行器设计中,应避免采用类似于长方体外形的钝体仿生翼,椭球翼推进性能最佳,但是由于椭球型质量分布导致对仿生飞行器连接部位质量要求较高,可采用推进性能相近的平板翼。
Abstract:
To study the influence of geometric parameters on the propulsion performance of threedimensional bionic motion wings, a general largescale solver based on IBLBM algorithm for TianheII supercomputer is developed. To implement this process, the immersed boundary method is used to construct a force function on the surface of the wing. Then the force function is spread to the neighbor fluid mesh with interpolation function. The lattice Boltzmann method is used to perform fluid computation and update the velocity field. Four different wings, i.e., ellipsoidal wing, plate wing, NACA0012 wing and cuboid wing, are investigated to explore how the geometric shapes of the wings influence the thrust coefficient and vortex structure. The numerical results show that the vortex induced by the ellipsoidal wing is fully structured and close to the surface of the wing, so its propulsion performance is best. The vortex structures of NACA0012 wing and plate wing are similar, and hence have similar propulsion performance. The vortex structure of cuboid wing, however, is small and far from the wing surface, leading to a worst propulsion performance. So, in design of bionic airplane, the cuboid wing should be excluded. Although the performance of ellipsoidal wing is best, it requires a highquality mass distribution in connection parts, so the plate wing would be a proper choice as a result of tradeoff.

参考文献/References:

[1]严惠云, 张浩磊, 刘小民. 一种仿生鱼体自主游动的水动力学特性分析 [J]. 西安交通大学学报, 2016, 50(2): 138144.
YAN Huiyun, ZHANG Haolei, LIU Xiaomin. Numerical analysis of hydrodynamics characteristics for autonomous swimming of bionic tunas [J]. Journal of Xi’an Jiaotong University, 2016, 50(2): 138144.
[2]李丹宇, 刘小民, 李典. 仿生翼几何特征与气动性能的关系初探 [J]. 西安交通大学学报, 2017, 51(1): 8896.
LI Danyu, LIU Xiaomin, LI Dian. Study on the relationship between geometric features and aerodynamic performance of bionic wings [J]. Journal of Xi’an Jiaotong University, 2017, 51(1): 8896.
[3]潘定一, 邓见, 邵雪明. 基于沉浸边界法的二维拍动翼数值模拟 [J]. 空气动力学学报, 2008, 26(4): 419424.
PAN Dingyi, DENG Jian, SHAO Xueming. Numerical simulation of 2D flapping foil by using immersedboundary method [J]. Acta Aerodynamica Sinica, 2008, 26(4): 419424.
[4]栾辉宝, 徐辉, 陈黎, 等. 有限体积法与LBM分区耦合模拟方腔自然对流 [J]. 西安交通大学学报, 2011, 45(5): 7883.
LUAN Huibao, XU Hui, CHEN Li, et al. Coupling of FVM and LBM for natural convection in a square cavity [J]. Journal of Xi’an Jiaotong University, 2011, 45(5): 7883.
[5]FENG Z G, MICHAELIDES E E. The immersed boundarylattice Boltzmann method for solving fluidparticles interaction problems [J]. Journal of Computational Physics, 2004, 195(2): 602628.
[6]WU J, SHU C. Implicit velocity correctionbased immersed boundarylattice Boltzmann method and its applications [J]. Journal of Computational Physics, 2009, 228(6): 19631979.
[7]BUCHHOLZ J H, SMITS A J. The wake structure and thrust performance of a rigid lowaspectratio pitching panel [J]. Journal of Fluid Mechanics, 2008, 603: 331365.
[8]WU J. An adaptive immersed boundarylattice Boltzmann method for simulating a flapping foil in ground effect [J]. Computers & Fluids, 2015, 106: 171184.
[9]SUZUKI K, INAMURO T. Effect of internal mass in the simulation of a moving body by the immersed boundary method [J]. Computers & Fluids, 2011, 49(1): 173187.
[10]SUZUKI K, INAMURO T. A higherorder immersed boundarylattice Boltzmann method using a smooth velocity field near boundaries [J]. Computers & Fluids, 2013, 76: 105115.
[11]SUZUKI K, MINAMI K, INAMURO T. Lift and thrust generation by a butterflylike flapping wingbody model: immersed boundarylattice Boltzmann simulations [J]. Journal of Fluid Mechanics, 2015, 767: 659695.
[12]DONG H, MITTAL R, NAJJAR F M. Wake topology and hydrodynamic performance of lowaspectratio flapping foils [J]. Journal of Fluid Mechanics, 2006, 566: 309343.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(11672225,11272005);陕西省自然科学基金资助项目(2016JM1007)
更新日期/Last Update: