|本期目录/Table of Contents|

[1]周晓松,梅志远,张焱冰.夹芯复合材料T型接头弯曲疲劳损伤机制及剩余强度试验研究[J].西安交通大学学报,2017,51(09):125-130.[doi:10.7652/xjtuxb201709018]
 ZHOU Xiaosong,MEI Zhiyuan,ZHANG Yanbing.Experimental Research on the Bending Fatigue Damage and Residual Strength of Composite Sandwich TJoint[J].Journal of Xi'an Jiaotong University,2017,51(09):125-130.[doi:10.7652/xjtuxb201709018]
点击复制

夹芯复合材料T型接头弯曲疲劳损伤机制及
剩余强度试验研究
(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
125-130
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Experimental Research on the Bending Fatigue Damage and
Residual Strength of Composite Sandwich TJoint
作者:
周晓松梅志远张焱冰
海军工程大学舰船工程系,430033,武汉
Author(s):
ZHOU XiaosongMEI ZhiyuanZHANG Yanbing
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430003, China
关键词:
复合材料T型连接弯曲载荷疲劳损伤剩余强度
Keywords:
composite Tjoint bending load fatigue damage residual strength
分类号:
TB330.1
DOI:
10.7652/xjtuxb201709018
摘要:
为了解夹芯复合材料T型接头在弯曲疲劳载荷作用下的损伤特征模式及剩余强度特性,以疲劳加载试验机和万能材料试验机为测试平台,开展了该型接头的弯曲疲劳试验以及疲劳加载前后的静力弯曲破坏对比试验。通过接头疲劳加载前的静力弯曲破坏试验,获取了结构初始破坏载荷并观测了损伤特征模式。试验研究结果表明,在弯曲疲劳载荷作用下,接头结构刚度呈现渐进退化特征且随疲劳载荷峰值的上升呈加速趋势,接头的疲劳损伤模式主要为水平基座夹芯板两侧简支边界位置泡沫芯材的剪切损伤,泡沫芯材力学性能的退化导致结构刚度的渐进式下降。进一步的试验结果对比分析表明,该型接头的疲劳安全峰值载荷可取为结构初始损伤载荷的70%,在疲劳安全峰值载荷范围内并经历105次弯曲疲劳循环后,接头的初始刚度和极限承载弯矩与疲劳承载前基本相当。
Abstract:
To understand the fatigue damage behavior and residual strength of composite sandwich Tjoint subject to bending loads, the bending fatigue tests were performed, including the static bending failure tests before and after the fatigue tests on fatigue loading test machine and universal material testing machine. The static bending failure tests were carried out before fatigue loading to obtain the initial failure load of the structure, and the damage characteristic mode was observed. The experimental results show that the stiffness of the composite sandwich Tjoint presents a progressive degradation, and the acceleration trend increases with the rise of the peak load; The shear damage of foam core is the main damage mode of the composite sandwich Tjoint on the side of the horizontal panel; The degradation of mechanical property of the foam leads to a progressive decrease in the structural stiffness. Further comparative analysis shows that the stiffness and the ultimate bearable bending moment of the composite sandwich Tjoint after 105 fatigue loading circles are approximately equal to that before fatigue loading is imposed under the condition that the fatigue peak load is 70% of the initial failure load.

参考文献/References:

[1]SUN F F, FAN H L, ZHOU C W, et al. Equivalent analysis and failure prediction of quasiisotropic composite sandwich cylinder with lattice core under uniaxial compression [J]. Composite Structures, 2013, 101: 180190.
[2]JIN F N, CHEN H L, ZHAO L, et al. Failure mechanisms of sandwich composites with orthotropic integrated woven corrugated cores: experiments [J]. Composite Structures, 2013, 98: 5358.
[3]ZHOU D W, LUOCA L A, SAUNDERS M. Numerical simulation of sandwich Tjoints under dynamic loading [J]. Composites: Part B, 2008, 39: 973985.
[4]陈亮, 杨坤. 夹芯复合材料T型接头制备工艺及力学性能试验研究 [J]. 中国舰船研究, 2014, 9(4): 7075.
CHEN Liang, YANG Kun. Processing method and experimental investigation on the mechanical properties for composite sandwich Tjoints [J]. Chinese Journal of Ship Research, 2014, 9(4): 7075.
[5]LIH C H, DHARMAWAN F, HERSZBERG I, et al. Fracture be haviour of composite maritime Tjoints [J]. Composite Structures, 2006, 75: 339350.
[6]张可荣, 张建勋, 黄嗣罗, 等. 大型厚壁筒体斜插弯管接头应力特征有限元快速预测 [J]. 西安交通大学学报, 2010, 44(3): 6871.
ZHANG Kerong, ZHANG Jianxun, HUANG Siluo, et al. Fast finite element stress prediction for large thick wall welded cylinder with angleinserting elbow [J]. Journal of Xi’an Jiaotong University, 2010, 44(3): 6871.
[7]周磊, 汪楚清, 孙清, 等. 玻璃纤维增强复合材料输电塔节点承载力试验研究及有限元分析 [J]. 西安交通大学学报, 2013, 47(9): 112.
ZHOU Lei, WANG Chuqing, SUN Qing, et al. Experimental study and finite element analysis on ultimate bearing capacity of joint of glass fiber reinforced polymer for transmission tower [J]. Journal of Xi’an Jiaotong University, 2013, 47(9): 112.
[8]BIAGI R, BARTSMITH H. Inplane column response of metallic corrugated core sandwich panels [J]. International Journal of Solids and Structures, 2012, 49(26): 39013914.
[9]YAN L L, HAN B, YU B, et al. Threepoint bending of sandwich beams with aluminum foamfilled corrugated cores [J]. Materials & Design, 2014, 60: 510519.
[10]JIN F N, CHEN H L, ZHAO L, et al. Failure mechanisms of sandwich composites with orthotropic integrated woven corrugated cores: experiments [J]. Composite Structures, 2013, 98: 5358.
[11]LI X, WANG Z H, ZHU F, et al. Response of aluminium corrugated sandwich panels under air blast loadings: Experiment and numerical simulation [J]. International Journal of Impact Engineering, 2014, 65: 7988.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51479205)
更新日期/Last Update: