|本期目录/Table of Contents|

[1]顾万里,胡云峰,张森,等.有刷直流电机自适应滑模控制器设计与实验[J].西安交通大学学报,2017,51(09):112-117.[doi:10.7652/xjtuxb201709016]
 GU Wanli,HU Yunfeng,ZHANG Sen,et al.Design and Experiments on the Adaptive Sliding Mode Controller of Brushed DC Motor∶Assessment[J].Journal of Xi'an Jiaotong University,2017,51(09):112-117.[doi:10.7652/xjtuxb201709016]
点击复制

有刷直流电机自适应滑模控制器设计与实验(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
112-117
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Design and Experiments on the Adaptive Sliding Mode Controller of
Brushed DC Motor∶Assessment
作者:
顾万里12胡云峰123张森2陈虹12
1.吉林大学汽车仿真与控制国家重点实验室,130025,长春;2.吉林大学通信工程学院,130025,长春;
3.吉林大学工程仿生教育部重点实验室,130022,长春
Author(s):
GU Wanli12HU Yunfeng123ZHANG Sen2CHEN Hong12
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China;
2. Department of Control Science and Engineering, Jilin University, Changchun 130025, China;
3. Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun 130022, China
关键词:
有刷直流电机扰动观测器自适应滑模控制器Lyapunov稳定性
Keywords:
brushed DC motor disturbance observer adaptive slide mode controller Lyapunov stability
分类号:
TP273
DOI:
10.7652/xjtuxb201709016
摘要:
为了提高有刷直流电机低速控制的精确性,设计了基于扰动补偿的有刷直流电机转速自适应滑模控制器。首先,针对转速模型中摩擦力在转速快速变化过程中体现的快变特性和在线估计困难的特点,采用Stribeck稳态摩擦力模型,通过离线辨识模型参数的方式计算摩擦力;其次,针对负载扭矩等扰动的慢变特性,设计了扰动观测器对其进行在线估计,并证明了估计误差的有限时间收敛性及有界性;最后,设计了自适应滑模控制器对扰动进行补偿和误差反馈校正,进而实现精确的转速跟踪控制,并在Lyapunov稳定性框架下证明了闭环系统的稳定性。该控制器的开关增益仅与扰动观测器估计误差的上界相关,避免了一般滑模控制方法采用高增益来提高控制精度的问题,从而能够大大减小系统输入抖振现象,有利于工程实现。所提方法的稳态误差分别为PI、传统滑模控制器稳态误差的46%、63%,响应时间在0.15 s以内,远小于PI、传统滑模控制器的响应时间,通过正弦参考信号跟踪实验,验证了所提方法在瞬态工况下具有很好的控制效果。实验结果表明,所设计的控制器能有效抑制摩擦力及负载扰动对电机控制带来的影响,能显著改善电机控制的稳态和瞬态性能,并且该方法能大大减小控制输入的抖振问题。
Abstract:
To improve the control accuracy of brushed DC motor at low speeds, a novel control system using disturbance observer and sliding mode control is developed. It aims at compensating the nonlinear friction and load disturbances. First, since the friction changes fast with the variation of motor speed, it is very difficult to estimate it online. Therefore, the Stribeck friction model is used for computing the friction, and the parameters of this model are identified offline. Then, a disturbance observer is designed for estimating the model errors and load disturbances. It is proved that the estimated errors can converge to a prescribed range after a finite time. Finally, the estimated errors are taken as the amplitude bounded disturbance inputs, and an adaptive slide mode controller is designed to guarantee the robustness of this system. The switching gain estimated by the adaptive technique is just related to the upper bounds of the estimated errors, therefore, the demand of highgain feedback for high accuracy is avoided since the switching gain is reduced with this method. The designed controller is evaluated through experimental tests. Compared with the PI and traditional slidemode control methods, the steadystate output error of this controller is reduced to 46% and 63% of the two methods’ errors, respectively; its response time is 0.15 s, and the input chattering is also reduced. It shows that the designed controller could effectively suppress the effects of the friction and load disturbances on the control over the brushed DC motor.

参考文献/References:

[1]汪永阳, 戴明, 丁策, 等. 光电稳定平台中高阶扰动观测器的应用 [J]. 光学精密工程, 2015, 23(2): 459466.
WANG Yongyang, DAI Ming, DING Ce, et al. Application of high order observer in EO stabilized platform [J]. Optics and Precision Engineering, 2015, 23(2): 459466.
[2]CHU H, GAO B, GU W, et al. Low speed control for permanent magnet dc torque motor using observerbased nonlinear triplestep controller [J]. IEEE Transactions on Industrial Electronics, 2016, 64(4): 32863296.
[3]YANG Z J, HARA S, KANAE S, et al. An adaptive robust nonlinear motion controller combined with disturbance observer [J]. IEEE Transactions on Control Systems Technology, 2010, 18(2): 454462.
[4]YAO B, ALMAJED M, TOMIZUKA M. Highperformance robust motion control of machine tools: an adaptive robust control approach and comparative experiments [J]. IEEE/ASME Transactions on Mechatronics, 1997, 2(2): 6376.
[5]DE WIT C C, LISCHINSKY P. Adaptive friction compensation with partially known dynamic friction model [J]. International Journal of Adaptive Control and Signal Processing, 1997, 11(1): 6580.
[6]刘锐. 基于反推自适应控制的永磁同步电机摩擦力矩补偿策略 [D]. 天津: 天津大学, 2012: 3167.
[7]邓永停, 李洪文, 王建立, 等. 基于预测函数控制和扰动观测器的永磁同步电机速度控制 [J]. 光学精密工程, 2014, 22(6): 15981605.
DENG Yongting, LI Hongwen, WANG Jianli, et al. Speed control for PMSM based on predictive functional control and disturbance observer [J]. Editorial Office of Optics and Precision Engineering, 2014, 22(6): 15981605.
[8]张小华, 刘慧贤, 丁世宏, 等. 基于扰动观测器和有限时间控制的永磁同步电机调速系统 [J]. 控制与决策, 2009, 24(7): 10281032.
ZHANG Xiaohua, LIU Huixian, DING Shihong, et al. PMSM speedadjusting system based on disturbance observer and finitetime control [J]. Control and Decision, 2009, 24(7): 10281032.
[9]UTKIN V I. Sliding mode control design principles and applications to electric drives [J]. IEEE Transactions on Industrial Electronics, 1993, 40(1): 2336.
[10]SONG G, WANG Y. A slidingmode based smooth adaptive robust controller for friction compensation [C]∥Proceedings of the American Control Conference. Piscataway,NJ,USA: IEEE, 1995: 35313535.
[11]王帅, 王建立, 李洪文, 等. 光电跟踪系统力矩波动的自抗扰控制 [J]. 光电工程, 2012, 39(4): 713.
WANG Shuai, WANG Jianli, LI Hongwen, et al. Active disturbance rejection control of torque ripple on optoelectronic tracking system [J]. OptoElectronic Engineering, 2012, 39(4): 713.
[12]翟园林, 王建立, 吴庆林, 等. 基于Stribeck模型的摩擦补偿控制设计 [J]. 计算机测量与控制, 2013, 21(3): 629631.
ZHAI Yuanlin, WANG Jianli, WU Qinglin, et al. Friction compensation control system design based on stribeck model [J]. Computer Measurement & Control, 2013, 21(3): 629631.
[13]GINOYA D, SHENDGE P D, PHADKE S B. Sliding mode control for mismatched uncertain systems using an extended disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 19831992.
[14]乔敏娟. 无人机飞行仿真转台控制系统研究 [D]. 长春: 长春理工大学, 2014: 3036.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(61520106008,61374046)
更新日期/Last Update: