|本期目录/Table of Contents|

[1]张鹏鹏,赵伟刚,董光能.铜基石墨密封材料的摩擦磨损性能研究[J].西安交通大学学报,2017,51(09):92-97.[doi:10.7652/xjtuxb201709013]
 ZHANG Pengpeng,ZHAO Weigang,DONG Guangneng.Investigation into Friction and Wear Behaviors of CopperBased Graphite Seal Material[J].Journal of Xi'an Jiaotong University,2017,51(09):92-97.[doi:10.7652/xjtuxb201709013]
点击复制

铜基石墨密封材料的摩擦磨损性能研究(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
92-97
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Investigation into Friction and Wear Behaviors of
CopperBased Graphite Seal Material
作者:
张鹏鹏1赵伟刚2董光能1
1.西安交通大学现代设计及转子轴承系统教育部重点实验室,710049,西安;
2.西北工业大学航天学院,710072,西安
Author(s):
ZHANG Pengpeng1ZHAO Weigang2DONG Guangneng1
1. Key Laboratory of Modern Design and RotorBearing System of Ministry of Education, Xi’an Jiaotong University,
Xi’an 710049, China; 2. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
关键词:
密封材料铜基石墨摩擦磨损性能磨损机理
Keywords:
seal material copperbased graphite friction and wear behavior wear mechanism
分类号:
TH117
DOI:
10.7652/xjtuxb201709013
摘要:
为研究液体火箭发动机密封材料——铜基石墨材料的摩擦磨损规律,采用销盘试验考察了铜基石墨材料在干摩擦和水润滑条件下的摩擦磨损性能和磨损机理,探讨了速度、载荷、摩擦温升对材料摩擦磨损性能的影响,结果表明:水润滑条件下不易形成铜基石墨转移膜,所以水润滑时的摩擦因数比干摩擦时的摩擦因数大;水润滑下,磨损机理为黏着和磨粒磨损,适当增加载荷、降低速度有利于降低铜基石墨材料的磨损率;干摩擦下,磨损机理为黏着磨损,适当降低载荷、提高速度有利于降低铜基石墨材料的磨损率。
Abstract:
The friction and wear behaviors of copperbased graphite seal material used in liquid rocket engine were investigated by means of pinondisk machine. The effects of load, velocity and temperature rise on friction and wear behaviors of the coppergraphite material were analyzed. Results show that: 1) It is not easy to form coppergraphite transfer film under water lubrication condition, so the friction coefficient under water lubrication condition is higher than that under dry friction; 2) Under the condition of water lubrication, the wear mechanism is adhesive wear and abrasive wear, and properly increasing load and decreasing velocity can reduce the wear rate of the copperbased graphite material; and 3) Under the condition of dry friction, the wear mechanism is adhesive wear, and properly decreasing load and increasing speed can help reduce the wear rate of copperbased graphite material.

参考文献/References:

[1]张国渊, 袁小阳, 赵伟刚, 等. 螺旋槽端面密封脱开转速的理论及试验 [J]. 机械工程学报, 2008, 44(8): 5560.
ZHANG Guoyuan, YUAN Xiaoyang, ZHAO Weigang, et al. Theoretical and experimental approach of separation speed of spiral groove face seals [J]. Chinese Journal of Mechanical Engineering, 2008, 44(8): 5560.
[2]WANG Jianlei, JIA Qian, YUAN Xiaoyang, et al. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment [J]. Applied Surface Science, 2012, 258(24): 95319535.
[3]袁青, 李兵虎, 童文俊, 等. 铜石墨复合材料改性研究进展 [J]. 材料导报, 2004, 18(11): 4749.
YUAN Qing, LI Binghu, TONG Wenjun, et al. Progress of studying modifying copper/graphite composite [J]. Materials Review, 2004, 18(11): 4749.
[4]浩宏奇, 丁华东, 李雅文, 等. 工艺因素对铜石墨烧结材料性能的影响 [J]. 西安交通大学学报, 1997, 31(3): 120122.
HAO, Hongqi, DING Huadong, LI Yawen, et al. Effect of processing factors on properties of coppergraphite sintered materials [J]. Journal of Xi’an Jiaotong University, 1997, 31(3): 120122.
[5]JIANG Rongrong, ZHOU Xufeng, FANG Qile, et al. Coppergraphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties [J]. Materials Science & Engineering: A, 2016, 654: 124130.
[6]蒋娅琳, 朱和国. 铜基复合材料的摩擦磨损性能研究现状 [J]. 材料导报, 2014, 28(3): 3336.
JIANG Yalin, ZHU Heguo. Research status of friction and wear properties of copper matrix composites [J]. Materials Review, 2014, 28(3): 3336.
[7]SARMADI H, KOKABI A H, REIHANI S M S. Friction and wear performance of coppergraphite surface composites fabricated by friction stir processing (FSP) [J]. Wear, 2013, 304(1/2): 112.
[8]RAJKUMAR K, KUNDU K, ARAVINDAN S, et al. Accelerated wear testing for evaluating the life characteristics of coppergraphite tribological composite [J]. Materials & Design, 2011, 32(5): 30293035.
[9]RAJKUMAR K, ARAVINDAN S. Tribological behavior of microwave processed coppernanographite composites [J]. Tribology International, 2013, 57: 282296.
[10]MA Wenlin, LU Jinjun. Effect of surface texture on transfer layer formation and tribological behaviour of coppergraphite composite [J]. Wear, 2011, 270(3/4): 218229.
[11]MA Wenlin, LU Jinjun, WANG Bo. Sliding friction and wear of Cugraphite against 2024, AZ91D and Ti6Al4V at different speeds [J]. Wear, 2009, 266(11/12): 10721081.
[12]马文林, 吕晋军. 干摩擦条件下铜石墨复合材料与ZQAl94铝青铜的磨损图研究 [J]. 摩擦学学报, 2008, 28(5): 389393.
MA Wenlin, L Jinjun. Dry sliding wear map of the coppergraphite composite and the copper alloy ZQAl94 [J]. Tribology, 2008, 28(5): 389393.
[13]BULLEN G N. Advanced materials for aerospace and space applications [J]. SAE International Journal of Aerospace, 2014, 7(1): 146155.
[14]XIAO J K, ZHANG L, ZHOU K C, et al. Microscratch behavior of coppergraphite composites [J]. Tribology International, 2013, 57: 3845.
[15]JOHNSON M T, CHILDERS A S, RAMIREZRICO J, et al. Thermal conductivity of woodderived graphite and coppergraphite composites produced via electrodeposition [J]. Composites: Part AApplied Science and Manufacturing, 2013, 53: 182189.
[16]张东亚, 林平, 董光能, 等. 性能可调的自润滑叠层复合材料的摩擦学行为研究 [J]. 西安交通大学学报, 2012, 46(11): 5357.
ZHANG Dongya, LIN Ping, DONG Guangneng, et al. Study on controllable tribological behaviors of selflubricating laminated composites [J]. Journal of Xi’an Jiaotong University, 2012, 46(11): 5357.
[17]JONES G A. On the tribological behaviour of mechanical seal face materials in dry line contact: part IIBulk ceramics, diamond and diamondlike carbon films [J]. Wear, 2004, 256(3): 415432.
[18]赵帅, 王晓雷. 高分子材料机械密封磨损特性及表面织构的影响 [J]. 摩擦学学报, 2015, 35(6): 761767.
ZHAO Shuai, WANG Xiaolei. The effects of surface texture on the wear properties of mechanical seals made of metal and polymers [J]. Tribology, 2015, 35(6): 761767.

备注/Memo

备注/Memo:
更新日期/Last Update: