|本期目录/Table of Contents|

[1]侯祥颖,方宗德.弧齿锥齿轮的向量式有限元静态啮合分析[J].西安交通大学学报,2017,51(09):85-91.[doi:10.7652/xjtuxb201709012]
 HOU Xiangying,FANG Zongde.Static Meshing Analysis of Spiral Bevel Gears Based on Vector Form Intrinsic Finite Element Method[J].Journal of Xi'an Jiaotong University,2017,51(09):85-91.[doi:10.7652/xjtuxb201709012]
点击复制

弧齿锥齿轮的向量式有限元静态啮合分析(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
85-91
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Static Meshing Analysis of Spiral Bevel Gears Based on
Vector Form Intrinsic Finite Element Method
作者:
侯祥颖方宗德
西北工业大学机电学院,710072,西安
Author(s):
HOU XiangyingFANG Zongde
School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
关键词:
弧齿锥齿轮向量式有限元六面体单元接触应力啮合性能
Keywords:
spiral bevel gear vector form intrinsic finite element hexahedral entity element
contact stress
meshing performance
分类号:
O242.21;TH132.41
DOI:
10.7652/xjtuxb201709012
摘要:
针对目前向量式有限元的类型和应用范围,根据向量式有限元的基本理论推导了八节点六面体实体单元的基本理论计算式,阐述了逆向运动和单元内力的求解过程,将向量式有限元的应用范围拓展到空间和工程应用领域。对于空间实体结构的接触行为,采用主从面算法和内外算法分别进行了全局搜索和局部搜索,以实现碰撞检测,并通过罚函数法来处理接触问题。以一对弧齿锥齿轮为例,建立了向量式有限元模型,利用该模型进行了分析和计算,并将计算结果与传统有限元计算结果进行了对比,结果表明:通过向量式有限元计算得到的接触力、接触应力以及齿面印痕等与传统有限元方法计算的结果吻合程度较高,并且可以在网格单元较少的情况下得到较为精确的结果。
Abstract:
According to the basic theory of the vector form intrinsic finite element (VFIFE) and its element type and current applications, basic theoretic formulas of the hexahedral entity element are derived by calculating reverse movement and element inner forces, which extends VFIFE application to complex solid structures and engineering fields. For the collisioncontact behavior of solid surfaces, the masterslave algorithm and insideoutside algorithm are used to perform global search and local search between the particle and hexahedral mesh surface of the outer entity surface, and a penalty method based on the central differential formula is presented for the analysis of collision response. Taking a pair of spiral bevel gears for example, its model is established and analyzed by VFIFE, and the results are compared with that of finite element method (FEM). Comparison shows that the stress, contact force and contact pattern agree well with the FEM results, and the VFIFE method is efficient for analyzing solid structures with a relatively sparse grid.

参考文献/References:

[1]林何, 王三民, 董金城. 多激励下某直升机传动系统动载特性 [J]. 航空动力学报, 2015, 30(1): 219227.
LIN He, WANG Sanmin, DONG Jincheng. Dynamic characteristics under various excitations for a helicopter transmission system [J]. Journal of Aerospace Power, 2015, 30(1): 219227.
[2]方宗德, 刘涛, 邓效忠. 基于传动误差设计的弧齿锥齿轮啮合分析 [J]. 航空学报, 2002, 23(3): 226230.
FANG Zongde, LIU Tao, DENG Xiaozhong. Tooth contact analysis of spiral bevel gears based on the design of transmission error [J]. Acta Aeronautica Et Astronautica Sinica, 2002, 23(3): 226230.
[3]JIANG Jinke, FANG Zongde. Design and analysis of modified cylindrical gears with a higherorder transmission error [J]. Mechanism & Machine Theory, 2015, 88: 141152.
[4]唐进元, 蒲太平. 基于有限元法的螺旋锥齿轮啮合刚度计算 [J]. 机械工程学报, 2011, 47(11): 2329.
TANG Jinyuan, PU Taiping. Spiral bevel gear meshing stiffness calculations based on the finite element method [J]. Chinese Journal of Mechanical Engineering, 2011, 47(11): 2329.
[5]TANG Jinyuan, LIU Yanping. Loaded multitooth contact analysis and calculation for contact stress of facegear drive with spur involute pinion [J]. Journal of Central South University, 2013, 20(2): 354362.
[6]CHAARI F, FAKHFAKH T, HADDAR M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness [J]. European Journal of Mechanics: ASolids, 2009, 28(3): 461468.
[7]PANDYA Y, PAREY A. Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack [J]. Engineering Failure Analysis, 2013, 27: 286296.
[8]FUENTES A, RUIZORZAEZ R, GONZALEZPEREZ I. Computerized design, simulation of meshing, and finite element analysis of two types of geometry of curvilinear cylindrical gears [J]. Computer Methods in Applied Mechanics & Engineering, 2014, 272(2): 321339.
[9]TING E C, WANG Y K. Fundamentals of a vector form intrinsic finite element: part 1Basic procedure and a plane frame element [J]. Journal of Mechanics, 2004, 20(2): 113122.
[10]丁承先, 段元锋, 吴东岳. 向量式结构力学 [M]. 北京: 科学出版社, 2012: 1168.
[11]喻莹. 基于有限质点法的空间钢结构连续倒塌破坏研究 [D]. 杭州: 浙江大学, 2010: 12177.
[12]DUAN Y F, HE K, ZHANG H M, et al. Entireprocess simulation of earthquakeinduced collapse of a mockup cablestayed bridge by vector form intrinsic finite element (VFIFE) method [J]. Advances in Structural Engineering, 2014, 17(3): 347360.
[13]倪秋斌, 段元锋, 高博青. 采用向量式有限元的斜拉索振动控制仿真 [J]. 振动工程学报, 2014, 27(2): 238245.
NI Qiubin, DUAN Yuanfeng, GAO Boqing. Vector form intrinsic finite element (VFIFE) based simulation on vibration control of stay cables [J]. Journal of Vibration Engineering, 2014, 27(2): 238245.
[14]WU T Y, WANG C Y, CHUANG C C, et al. Motion analysis of 3D membrane structures by a vector form intrinsic finite element [J]. Journal of the Chinese Institute of Engineers, 2007, 30(6): 961976.
[15]WU T Y, TING E C. Large deflection analysis of 3D membrane structures by a 4node quadrilateral intrinsic element [J]. ThinWalled Structures, 2008, 46(3): 261275.
[16]王震, 赵阳, 杨学林. 基于向量式有限元的实体结构非线性行为分析 [J]. 建筑结构学报, 2015, 36(3): 133140.
WANG Zhen, ZHAO Yang, YANG Xuelin. Nonlinear behavior analysis of entity structure based on vector form intrinsic finite element [J]. Journal of Building Structures, 2015, 36(3): 133140.
[17]王震, 赵阳, 杨学林. 薄壳结构碰撞、断裂和穿透行为的向量式有限元分析 [J]. 建筑结构学报, 2016, 37(6): 5359.
WANG Zhen, ZHAO Yang, YANG Xuelin. Collisioncontact, crackfracture and penetration behavior analysis of thinshell structures based on vector form intrinsic finite element [J]. Journal of Building Structures, 2016, 37(6): 5359.
[18]BLACKER T. Automated conformal hexahedral meshing constraints, challenges and opportunities [J]. Engineering with Computers, 2001, 17(3): 201210.
[19]江见鲸, 何放龙, 何益斌, 等. 有限元法及其应用 [M]. 北京: 机械工业出版社, 2006: 5153.
[20]钟阳, 钟志华, 李光耀, 等. 机械系统接触碰撞界面显式计算的算法综述 [J]. 机械工程学报, 2011, 47(13): 4458.
ZHONG Yang, ZHONG Zhihua, LI Guangyao, et al. Review on contact algorithms calculating the contactimpact interface in mechanical system with explicit FEM [J]. Chinese Journal of Mechanical Engineering, 2011, 47(13): 4458.
[21]HALLQUIST J O, GOUDREAU G L, BENSON D J. Sliding interfaces with contactimpact in largescale Lagrian computations [J]. Computer Methods in Applied Mechanics & Engineering, 1985, 51(1/2/3): 107137.
[22]WANG S P, NAKAMACHI E. The insideoutside contact search algorithm for finite element analysis [J]. International Journal for Numerical Methods in Engineering, 1997, 40(19): 36653685.
[23]申莹莹. 基于向量式分析的轮轨滚动接触模拟 [D]. 成都: 西南交通大学, 2012: 3334.
[24]侯祥颖, 方宗德, 邓效忠, 等. 弧齿锥齿轮有限元建模与接触分析 [J]. 哈尔滨工程大学学报, 2015, 36(6): 826830.
HOU Xiangying, FANG Zongde, DENG Xiaozhong, et al. Contact analysis of spiral bevel gears based on finite element model [J]. Journal of Harbin Engineering University, 2015, 36(6): 826830.
[25]LEE H H, CHANG P Y. Development on a new plate element of vector form intrinsic finite element [C]∥AIP Conference Proceedings: Vol. 1233. New York, USA: AIP Publishing, 2010: 15121517.
[26]WU T Y, LEE J J, TING E C. Motion analysis of structures (MAS) for flexible multibody systems: planar motion of solids [J]. Multibody System Dynamics, 2008, 20(3): 197221.
[27]侯祥颖, 方宗德. 考虑边缘接触的弧齿锥齿轮有限元接触分析 [J]. 西安交通大学学报, 2016, 50(11): 6974.
HOU Xiangying, FANG Zongde. Tooth contact analysis of spiral bevel gears considering edge contact with finite element method [J]. Journal of Xi’an Jiaotong University, 2016, 50(11): 6974.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51375384)
更新日期/Last Update: