|本期目录/Table of Contents|

[1]慕光宇,王枫,米小珍.压缩机舌簧排气阀运动模型对比及动态特性影响因素分析[J].西安交通大学学报,2017,51(09):69-76.[doi:10.7652/xjtuxb201709010]
 MU Guangyu,WANG Feng,MI Xiaozhen.Comparison of Motion Models of Reciprocating Compressor Discharge Reed Valve and Analysis for Factors Affecting Dynamic Characteristics[J].Journal of Xi'an Jiaotong University,2017,51(09):69-76.[doi:10.7652/xjtuxb201709010]
点击复制

压缩机舌簧排气阀运动模型对比及
动态特性影响因素分析
(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
69-76
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Comparison of Motion Models of Reciprocating Compressor Discharge
Reed Valve and Analysis for Factors Affecting Dynamic Characteristics
作者:
慕光宇12王枫3米小珍4
1.大连交通大学机械工程学院,116028,辽宁大连;2.大连海洋大学机械与动力工程学院,116023,辽宁大连;
3.大连交通大学动车学院,116028,辽宁大连;4.大连交通大学交通运输工程学院,116028,辽宁大连
Author(s):
MU Guangyu12WANG Feng3MI Xiaozhen4
1. Mechanical Engineering College, Dalian Jiaotong University, Dalian, Liaoning 116028, China;
2. Mechanical and Power Engineering College, Dalian Ocean University, Dalian, Liaoning 116023, China;
3. School of HighTrain and Maintenance Service, Dalian Jiaotong University, Dalian, Liaoning 116028, China;
4. School of Transportation Engineering, Dalian Jiaotong University, Dalian, Liaoning 116028, China
关键词:
活塞式压缩机舌簧排气阀单质点模型悬臂梁模型动态特性
Keywords:
reciprocating compressor discharge reed valve singleparticle model
cantileverbeam model
dynamic characteristic
分类号:
TH457;TB652
DOI:
10.7652/xjtuxb201709010
摘要:
为了揭示压缩机舌簧阀启闭运动失效过程及其影响因素,建立了阀片运动的单质点模型和悬臂梁模型,在单质点模型中,综合考虑了阀片的有效工作长度、弹力、质量随位移变化的关系,在Matlab环境下,采用四阶龙格库塔法计算程序对2种模型进行了求解。为了验证模型的有效性,建立了舌簧排气阀位移测量实验系统,并将测量结果与2种模型的计算结果进行了比较,结果表明,单质点模型相比悬臂梁模型能更准确地反映舌簧排气阀的运动规律。利用单质点模型分析了气阀升程、阀片厚度以及阀孔直径对舌簧阀动态特性的影响,分析结果表明:阀片升程增加,舌簧排气阀的初始关闭角减小,最大冲击速度增大;阀片厚度增大,对初始开启角影响不大,但初始关闭角提前;排气阀口直径减小,阀片开启、关闭时间延迟,压缩机能效比降低。该研究可为舌簧阀组结构参数选择、优化设计提供参考。
Abstract:
To reveal the motion failure process of the reed valve in a reciprocating compressor and influencing factors, the singleparticle model and cantileverbeam model of valve motion are established. The relationships of the effective working length, elastic force and valve plate mass with the changing displacement are taken into account in the singleparticle model. The fourthorder RungeKutta method is used to solve the two models in Matlab environment to find an efficient numerical solution. An experimental system is constructed to measure the actual reed valve movements and to verify the effectiveness. The measured data are compared with the calculated results of the two models. It is concluded that the singleparticle model can describe the motion law of the reed valve more accurately. Hence, the influences of valve lift, valve plate thickness and valve orifice diameter on the dynamic characteristics of reed valve are analyzed with the singleparticle model. It indicates that with the increasing valve lift, the initial closing angle of the discharge reed valve decreases while the maximum impact velocity increases; the increasing valve thickness imposes slight effect on the initial opening angle whereas the initial closing angle is advanced; with the decreasing exhaust valve port diameter, the valve opening time increases, the closing time tends to delay and the compressor energy efficiency ratio decreases.

参考文献/References:

[1]FENG Wang, SU Chong, MU Guangyu, et al. An axiomatic design optimization for suction reed valvecomponent of compressors [C]∥IEEE 19th International Conference on Computer Supported Cooperative Work in Design. Piscataway, NJ, USA: IEEE, 2015: 368371.
[2]王枫. 活塞式制冷压缩机的舌簧阀研究综述 [J]. 流体机械, 2011, 39(1): 4251.
WANG Feng. Study on the reed valve of piston refrigeration compressor [J]. Fluid Machinery, 2011, 39(1): 4251.
[3]CHEN Y, HALM N P, GROLL E A, et al. Mathematical modelling of scroll compressors: part ⅠCompression process modeling [J]. International Journal of Refrigeration, 2002, 25(6): 731750.
[4]CHEN Yu, HALM N P, BRAUN J E, et al. Mathematical modelling of scroll compressors: partⅡCompression process modeling [J]. International Journal of Refrigeration, 2002, 25(6): 751764.
[5]YANG Bin, BRADSHAW C R, GROLL E A. Modeling of a semihermetic CO2 reciprocating compressor including lubrication submodels for piston rings and bearings [J]. International Journal of Refrigeration, 2013, 36(7): 19251937.
[6]林梅, 姚峻, 潘树林. 簧片阀三种力学模型的建立及比较 [J]. 应用力学学报, 1997, 14(1): 118123.
LIN Mei, YAO Jun, PAN Shulin. Establishment of three mathematical models and comparison for the reed valves [J]. Journal of Applied Mechanics, 1997, 14(1): 118123.
[7]吴业正. 往复式压缩机数学模型及应用 [M]. 西安: 西安交通大学出版社, 1989: 102112.
[8]王毅, 谭伟华. 制冷压缩机气阀运动规律的数学模拟 [J]. 流体机械, 2001, 29(3): 1822.
WANG Yi, TAN Weihua. Mathematical simulation of the valve movement in a refrigeration compressor [J]. Fluid Mechanics, 2001, 29(3): 1822.
[9]杨乐之, 张小青. 微型压缩机舌簧阀的优化设计 [J]. 压缩机技术, 1994(5): 1721.
YANG Lezhi, ZHANG Xiaoqing. Optimal design of micro compressor reed valve [J]. Compressor Technology, 1994(5): 1721.
[10]HUANG Bo. Dynamic analysis of the discharge valve of the rotary compressor [C]∥International Compressor Engineering Conference. West Lafayette, IN, USA: Purdue University, 2008: 1182.
[11]王枫, 尚浩田, 米小珍, 等. 基于CFD的舌簧排气阀流动特性研究 [J]. 制冷学报, 2016, 37(2): 3845.
WANG Feng, SHANG Haotian, MI Xiaozhen, et al. Study on the flow characteristic of discharge reed valve based on CFD [J]. Journal of Refrigeration, 2016, 37(2): 3845.
[12]宋明毅, 吴伟烽, 李直. 汽车空调压缩机气阀运动规律模拟 [J]. 西安交通大学学报, 2015, 49(12): 144150.
SONG Mingyi, WU Weifeng, LI Zhi. Numerical simulation of the valve motion in automotive air conditioning compressors [J]. Journal of Xi’an Jiaotong University, 2015, 49(12): 144150.
[13]张慢来, 张琴, 廖锐全, 等. 压缩机环状进气阀不同步特性的数值分析 [J]. 排灌机械工程学报, 2014, 32(5): 422428.
ZHANG Manlai, ZHANG Qin, LIAO Ruiquan, et al. Numerical analysis of unsynchronizing motion of ringinlet valve in reciprocating compressor [J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(5): 422428.
[14]王君, 宋永兴, 查海滨, 等. 涡旋压缩机三维数值模拟及排气过程研究 [J]. 工程热物理学报, 2016, 37(4): 766769.
WANG Jun, SONG Yongxing, CHA Haibin, et al. 3D numerical simulation and study of discharge process for scroll compressors [J]. Chinese Journal of Engineering Thermophysics, 2016, 37(4): 766769.
[15]李春银, 王树林. 汽车空调旋叶式压缩机排气阀片的振动特性 [J]. 振动与冲击, 2014, 33(8): 186191.
LI Chunyin, WANG Shulin. Vibration behavior of a discharge valve for vane compressor of a car air conditioner [J]. Journal of Vibration and Shock, 2014, 33(8): 186191.
[16]KIM J H. Valve dynamic analysis of a hermetic reciprocating compressor [C]∥International Compressor Engineering Conference. West Lafayette, IN, USA: Purdue University, 2006: C107.
[17]KIMHS. Fluid structure interaction and impact analyses of reciprocating compressor discharge valves [C]∥International Compressor Engineering Conference. West Lafayette, IN, USA: Purdue University, 2008: 1112.
[18]KINJOK. Study of CFD considering valve behavior in reciprocating compressor [C]∥International Compressor Engineering Conference. West Lafayette, IN, USA: Purdue University, 2010: 1256.
[19]林梅, 吴业正. 压缩机自动阀 [M]. 西安: 西安交通大学出版社, 1991: 6994.
[20]MA Yuan, HE Zhilong, PENG Xueyuan, et al. Experimental investigation of the discharge valve dynamics in a reciprocating compressor for transcritical CO2 refrigeration cycle [J]. Applied Thermal Engineering, 2012, 32: 1321.
[21]马元, 张波, 彭学院, 等. 跨临界CO2活塞压缩机阀片运动特性的实验研究 [J]. 西安交通大学学报, 2011, 45(3): 2529.
MA Yuan, ZHANG Bo, PENG Xueyuan, et al. Experiment on discharge valve dynamics of reciprocating compressor in transcritical CO2 refrigeration cycle [J]. Journal of Xi’an Jiaotong University, 2011, 45(3): 2529.
[22]WANG Y, XUE C, FENG J. Experimental investigation on valve impact velocity and inclining motion of a reciprocating compressor [J]. Applied Thermal Engineering, 2013, 61(2): 149156.
[23]HABING R A, PETERS M C. An experimental method for validating compressor valve vibration theory [J]. Journal of Fluids and Structures, 2006, 22(5): 683697.
[24]ADOLF B, DANIEL N, RAIMUN A, et al. Influence of the main parameters of the suction valve on the overall performance of a small hermetic reciprocating compressor [C]∥International Compressor Engineering Conference. West Lafayette, IN, USA: Purdue University, 2008: 1315.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51205035);辽宁省自然科学基金资助项目(201602133,20170540107);辽宁省教育厅科学研究一般项目(L2013280)
更新日期/Last Update: