|本期目录/Table of Contents|

[1]史文库,刘国政,陈志勇.橡胶的可压缩性在推力杆球铰有限元分析中的应用[J].西安交通大学学报,2017,51(09):63-68.[doi:10.7652/xjtuxb201709009]
 SHI Wenku,LIU Guozheng,CHEN Zhiyong.Application of Rubber Compressibility to Finite Element Analysis for Thrust Rod[J].Journal of Xi'an Jiaotong University,2017,51(09):63-68.[doi:10.7652/xjtuxb201709009]
点击复制

橡胶的可压缩性在推力杆球铰有限元分析中的应用(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
63-68
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Application of Rubber Compressibility to
Finite Element Analysis for Thrust Rod
作者:
史文库刘国政陈志勇
吉林大学汽车仿真与控制国家重点实验室,130022,长春
Author(s):
SHI WenkuLIU GuozhengCHEN Zhiyong
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
关键词:
推力杆有限元分析橡胶可压缩性
Keywords:
thrust rod finite element analysis rubber compressibility
分类号:
TH212;TH213.3
DOI:
10.7652/xjtuxb201709009
摘要:
以重型车推力杆橡胶球铰为研究对象,对其纵向刚度进行了有限元仿真和试验验证,分析了橡胶的可压缩性对有限元仿真结果的影响,并对橡胶球铰结构进行了优化。采用单轴拉伸试验获取橡胶的应力应变数据,由此拟合出超弹性本构模型中应变偏量能部分的参数;体积应变能部分的参数由泊松比推导得出,通过调整泊松比可以改变橡胶的可压缩性。研究结果表明,橡胶的可压缩性对推力杆橡胶球铰的有限元仿真结果有很大影响,推力杆的刚度随泊松比的增加而增大。泊松比小于0.495时,推力杆刚度的仿真和试验值线性增大;泊松比大于0.495时,推力杆的刚度值增速加快;泊松比取0.492时,仿真值与试验值吻合。这表明调整泊松比来修正橡胶材料的可压缩性是合理的,该结果对橡胶材料的设计具有参考价值。
Abstract:
Following the finite element analysis and the experimental verification, the vertical stiffness of thrust rod for heavyduty vehicles is analyzed, the influence of rubber compressibility on the simulation result is taken into consideration, and the structure of the thrust rod is optimized. Uniaxial tension test for rubber specimens is conducted to obtain the strainstress data, by which the parameters of the deviatoric term are fitted. The parameters of the volumetric term are described by Poisson’s ratio. And the compressibility can be adjusted by changing the value of Poisson’s ratio. It shows that the compressibility exerts an important effect on the finite element simulation result, and the stiffness of the thrust rod increases with Poisson’s ratio increasing. The stiffness of the thrust rod increases linearly when Poisson’s ratio is less than 0.495, and it increases rapidly as Poisson’s ratio is larger than 0.495. When Poisson’s ratio is 0.492, the results of simulation and experiment coincide well. It indicates that modification of rubber compressibility by adjusting Poisson’s ratio is reasonable.

参考文献/References:

[1]HORGAN C O, MURPHY J G. Constitutive models for almost incompressible isotropic elastic rubberlike materials [J]. Journal of Elasticity, 2007, 87(2/3): 133146.
[2]ZHANG H, LI J, PENG T. Development and mechanical performance of a new kind of bridge seismic isolator for low seismic regions [J]. Shock and Vibration, 2013, 20(4): 725735.
[3]MISHRA H K, IGARASHI A, MATSUSHIMA H. Finite element analysis and experimental verification of the scrap tire rubber pad isolator [J]. Bulletin of Earthquake Engineering, 2013, 11(2): 687707.
[4]KOROCHKINA T V, JEWELL E H, CLAYPOLE T C, et al. Experimental and numerical investigation into nonlinear deformation of silicone rubber pads during ink transfer process [J]. Polymer Testing, 2008, 27(6): 778791.
[5]OSGOOEI P M, KONSTANTINIDIS D, TAIT M J. Variation of the vertical stiffness of stripshaped fiberreinforced elastomeric isolators under lateral loading [J]. Composite Structures, 2016, 144: 177184.
[6]何小静, 上官文斌. 橡胶隔振器静态力位移关系计算方法的研究 [J]. 振动与冲击, 2012, 31(11): 9197.
HE Xiaojing, SHANGGUAN Wenbin. Calculating methods for force versus displacement relation of a rubber isolator [J]. Journal of Vibration and Shock, 2012, 31(11): 9197.
[7]王国权, 刘萌, 姚艳春, 等. 不同本构模型对橡胶制品有限元法适应性研究 [J]. 力学与实践, 2013, 35(4): 4047.
WANG Guoquan, LIU Meng, YAO Yanchun, et al. Application of different constitutive models in the nonlinear finite element method for rubber parts [J]. Mechanics in Engineering, 2013, 35(4): 4047.
[8]朱武. 某重型卡车叠层橡胶弹簧有限元分析及稳健设计 [D]. 长沙: 湖南大学, 2011: 2635.
[9]周振凯, 徐兵, 胡文军, 等. 橡胶隔振器大变形有限元分析 [J]. 振动与冲击, 2013, 32(5): 171175.
ZHOU Zhenkai, XU Bing, HU Wenjun, et al. Large deformation finite element analysis of rubber isolator [J]. Journal of Vibration and Shock, 2013, 32(5): 171175.
[10]QAMAR S Z, AKHTAR M, PERVEZ T, et al. Mechanical and structural behavior of a swelling elastomer under compressive loading [J]. Materials & Design, 2013, 45: 487496.
[11]STARKOVA O, ANISKEVICH A. Poisson’s ratio and the incompressibility relation for various strain measures with the example of a silicafilled SBR rubber in uniaxial tension tests [J]. Polymer Testing, 2010, 29(3): 310318.
[12]MOTT P H, DORGAN J R, ROLAND C M. The bulk modulus and Poisson’s ratio of “incompressible” materials [J]. Journal of Sound and Vibration, 2008,312(4):572575.
[13]中华人民共和国国家质量监督检验检疫总局. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.
[14]MARTINS P, NATAL JORGE R M, FERREIRA A J M. A comparative study of several material models for prediction of hyperelastic properties: application to silicone: rubber and soft tissues [J]. Strain, 2006, 42(3): 135147.
[15]OGDEN R W, SACCOMANDI G, SGURA I. Fitting hyperelastic models to experimental data [J]. Computational Mechanics, 2004, 34(6): 484502.
[16]SIMULIA. Abaqus version 68 document collection: Abaqus analysis user’s manual [M]. Providence, RI, USA: Dassault Systemes Simulia Corp., 2009: 6978.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51205158);吉林省重大科技专项资助项目(212E362415)
更新日期/Last Update: