|本期目录/Table of Contents|

[1]袁超,洪伟,苏岩,等.直喷汽油机起动过程多环芳烃排放的研究[J].西安交通大学学报,2017,51(09):54-62.[doi:10.7652/xjtuxb201709008]
 YUAN Chao,HONG Wei,SU Yan,et al.Polycyclic Aromatic Hydrocarbons from a Gasoline Direct Injection Engine During Start[J].Journal of Xi'an Jiaotong University,2017,51(09):54-62.[doi:10.7652/xjtuxb201709008]
点击复制

直喷汽油机起动过程多环芳烃排放的研究(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
54-62
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Polycyclic Aromatic Hydrocarbons from a Gasoline Direct
Injection Engine During Start
作者:
袁超123洪伟12苏岩12解方喜12陈静4
1.吉林大学汽车仿真与控制国家重点实验室,130025,长春;2.吉林大学汽车工程学院,130025,长春;
3.一汽铸造有限公司,130062,长春;4.江西五十铃发动机有限公司,330200,南昌
Author(s):
YUAN Chao123HONG Wei12SU Yan12XIE Fangxi12CHEN Jing4
1. State Key Laboratory of Automobile Dynamic Simulation and Control, Jilin University, Changchun 130025, China;
2. College of Automotive Engineering, Jilin University, Changchun 130025, China; 3. First Automobile Works
Foundry Co., Ltd., Changchun 130062, China; 4. Jiangxi Isuzu Motors Co., Ltd., Nanchang 330100, China
关键词:
直喷汽油机含氧燃料多环芳烃起动
Keywords:
gasoline direct injection engine oxygenated fuel polycyclic aromatic hydrocarbons start
分类号:
TK411+.5
DOI:
10.7652/xjtuxb201709008
摘要:
通过采用3种含氧燃料:汽油、添加体积分数为10%乙醇的乙醇汽油燃料(E10)、添加体积分数为15%甲醇的甲醇汽油燃料(M15),对直喷汽油机起动过程的多环芳烃(PAHs)排放采用索式萃取法萃取后,再利用气相色谱质谱联用仪进行了分析。结果表明,E10燃料在水温为20℃时冷起动和水温为80℃时热起动所排放的PAHs较纯汽油分别降低了39.03%和23.78%,M15燃料在水温为20℃时冷起动和水温为80℃时热起动所排放的PAHs较纯汽油分别降低了30.17%和66.06%。不同水温下由起动过程排放的PAHs毒性分析得出:水温为20℃冷起动时,E10、M15燃料排放的PAHs总苯并(a)芘毒性等效值较纯汽油分别降低了23.25%和21.47%;水温为80℃热起动时,E10、M15燃料排放的PAHs总苯并(a)芘毒性等效值较纯汽油分别降低了33.26%和50.46%,纯汽油、E10、M15这3种燃料在水温为80℃时热起动较20℃时冷起动分别降低了44.25%、50.80%和64.84%。
Abstract:
Polycyclic aromatic hydrocarbons (PAHs) emitted from a gasoline direct injection (GDI) engine during start were extracted via Soxhlet extraction system and analyzed by GSMS. Three kinds of fuel, gasoline, gasoline blended with 10% volume fraction ethanol (E10), and gasoline blended with 15% volume fraction methanol (M15), were considered. The results show that compared with gasoline, PAHs mass concentration of the exhaust extraction from the engine fueled with E10 decreases by 39.03% and 23.78% under 20℃ and 80℃ coolant start conditions, respectively; PAHs mass concentration from the engine fueled with M15 decreases by 30.17% and 66.06%, respectively. Toxicity of PAHs was assessed under different coolant’s temperature start conditions. Under 20℃ coolant start condition, benzo (a) pyrene equivalent toxicity values of PAHs from the engine fueled with E10 and M10 decrease by 23.25% and 21.47% compared with gasoline; under 80℃ coolant start condition, benzo (a) pyrene equivalent toxicity values of PAHs from the engine fueled with E10 and M10 decrease by 33.26% and 50.46% compared with gasoline. In contrast to 20℃ coolant start condition, benzo (a) pyrene equivalent toxicity values of PAHs from the engine fueled with gasoline, E10 and M15 decrease the values by 44.25%, 50.80% and 64.84% respectively under 80℃ coolant start condition.

参考文献/References:

[1]BRAISHER M, STONE R, PRICE P. Particle number emissions from a range of European vehicles: SAE 2010010786 [R]. Washington, DC, USA: SAE, 2010.
[2]GAUDERMAN W J, URMAN R. Association of improved air quality with lung development in children [J]. England Journal of Medicine, 2015, 372(10): 905913.
[3]RAVINDRA K, SOKHI R, van GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation [J]. Atmos Environ, 2008, 42(13): 28952921.
[4]VOJTISEKLOM M, PECHOUT M, DITTRICH L, et al. Polycyclic aromatic hydrocarbons (PAH) and their genotoxicity in exhaust emissions from a diesel engine during extended lowload operation on diesel and biodiesel fuels [J]. Atmos Environ, 2015, 109: 918.
[5]BAKEAS E, KARAVALAKIS G, FONTARAS G, et al. An experimental study on the impact of biodiesel origin on the regulated and PAH emissions from a Euro 4 lightduty vehicle [J]. Fuel, 2011, 90(11), 32003208.
[6]MARK S P, ALEX F. Study of particle number emissions from a turbocharged gasoline direct injection(GDI) engine including data from a fastresponse particle size spectrometer: SAE 2011011224 [R]. Washington, DC, USA: SAE, 2011.
[7]WHELAN I, SMITH W. The effect of engine operating conditions on engineout particulate matter from a gasoline directinjection engine during coldstar: SAE 2012011711 [R]. Washington, DC, USA: SAE, 2012.
[8]CHEN L F, BRAISHER M. The influence of ethanol blends on particulate matter emissions from gasoline direct injection engines: SAE 2010010793 [R]. Washington, DC, USA: SAE, 2010.
[9]LIANG B, GE Y S. Comparison of PM emissions from a gasoline direct injected (GDI) vehicle and a port fuel injected (PFI) vehicle measured by electrical low pressure impactor (ELPI) with two fuels: gasoline and M15 methanol gasoline [J]. Journal of Aerosol Science, 2013, 57: 2231.
[10]李翔, 裴毅强, 秦静, 等. GDI发动机燃用甲醇及甲醇/汽油混合燃料的微粒排放特性研究 [J]. 内燃机工程, 2015, 36(2): 16.
LI Xiang, PEI Yiqiang, QIN Jing, et al. Investigation on particulate matter emission of GDI engine fueled with methanol and gasolinemethanol blends [J]. Chinese Internal Combustion Engine Engineering, 2015, 36(2): 16.
[11]李方成, 黎苏, 白洪林, 等. 汽油机多环芳香烃的生成规律 [J]. 燃烧科学与技术, 2010, 16(3): 210214.
LI Fangcheng, LI Su, BAI Honglin, et al. Formation mechanism of polycyclic aromatic hydrocarbons in gasoline engine [J]. Journal of Combustion Science and Technology, 2010, 16(3): 210214.
[12]赵昌普, 陈生齐, 宋崇林, 等. 正庚烷预混火焰中PAHs的生成机理 [J]. 燃烧科学与技术, 2008, 14(5): 400405.
ZHAO Changpu, CHEN Shengqi, SONG Chonglin, et al. PAHs formation mechanism in nheptane premixed flame [J]. Journal of Combustion Science and Technology, 2008, 14(5): 400405.
[13]胡启秀, 赵继俊, 蒋锦锋, 等. 从自由基反应角度探讨多环芳烃的形成机理 [J]. 四川省卫生管理干部学院学报, 2009, 28(1): 3335.
HU Qixiu, ZHAO Jijun, JIANG Jinfeng, et al. Study on the formation mechanism of polycyclic aromatic hydrocarbons based on free radical reaction [J]. Journal of Sichuan Continuing Education College of Medical Sciences, 2009, 28(1): 3335.
[14]李铭迪. 含氧燃料颗粒状态特征及前驱体形成机理研究 [D]. 镇江: 江苏大学, 2014.
[15]郑东, 钟北京. 汽油代表性组分在预混火焰中的碳烟生成特性及动力学分析 [J]. 燃烧科学与技术, 2015, 21(2): 131134.
ZHENG Dong, ZHONG Beijing. Characteristics and kinetic analysis of soot formation for representative species of gasoline in premixed flame [J]. Journal of Combustion Science and Technology, 2015, 21(2): 131134.
[16]王超, 刀谞, 张霖琳, 等. 我国大气背景点颗粒物PAHs分布特征及毒性评估 [J]. 中国环境科学, 2015, 35(12): 35433549.
WANG Chao, DAO Xu, ZHANG Linlin, et al. Characteristics and toxicity assessment of airborne particulate polycyclic aromatic hydrocarbons of four background sites in China [J]. China Environmental Science, 2015, 35(12): 35433549.
[17]ROBERT E, BRIAN G B, JOSEPHY P D, et al. Comparison of the Ames salmonella assay and Mutatox genotoxicity assay for assessing the mutagenicity of polycyclic aromatic compounds in porewater from Athabasca oil sands mature fine tailings [J]. Environ Sci Technol, 1999, 33(15): 25102516.
[18]NISBET C, LAGOY P. Toxic equivalency factor (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290300.
[19]TAN Piqiang, RUAN Shuaishuai, HU Zhiyuan, et al. Particlebound PAHs emission from a heavy duty diesel engine with biodiesel fuel: SAE 2013012573 [R]. Washington, DC, USA: SAE, 2013.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51276080);国家高技术研究发展计划资助项目(2012AA111702)
更新日期/Last Update: