|本期目录/Table of Contents|

[1]秦梦晓,张旭辉,汤成龙.液滴撞击不同粗糙度固体表面动力学行为实验研究[J].西安交通大学学报,2017,51(09):26-31.[doi:10.7652/xjtuxb201709004]
 QIN Mengxiao,ZHANG Xuhui,TANG Chenglong.Experimental Study on the Droplet Impact on Solid Surface with Different Roughness[J].Journal of Xi'an Jiaotong University,2017,51(09):26-31.[doi:10.7652/xjtuxb201709004]
点击复制

液滴撞击不同粗糙度固体表面动力学行为实验研究(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
26-31
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Experimental Study on the Droplet Impact on Solid Surface with
Different Roughness
作者:
秦梦晓张旭辉汤成龙
西安交通大学动力工程多相流国家重点实验室,710049,西安
Author(s):
QIN MengxiaoZHANG XuhuiTANG Chenglong
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
液滴碰壁粗糙度
Keywords:
droplet impact surface roughness
分类号:
TK402
DOI:
10.7652/xjtuxb201709004
摘要:
针对液滴撞击固体表面时动力学行为的不同影响因素,利用高速摄像技术捕捉了4种物性不同的液滴,即癸烷、十四烷、蒸馏水和无水乙醇液滴撞击不同粗糙度固体表面后的铺展与飞溅形态。探究了黏度、表面张力与实验壁面粗糙度对液滴撞击壁面后的最大铺展因数和铺展飞溅临界韦伯数的影响。结果表明:实验流体的动力黏度越大,液滴在铺展过程中受到的阻力越大,也就越不容易铺展,相同韦伯数下的最大铺展因数越小;表面张力越大,液滴碰壁后更有可能发生回缩。在实验过程中也观察到,只有表面张力明显大于其他工质的蒸馏水液滴在碰壁后发生了回缩。壁面越粗糙,液滴在铺展过程中需要润湿越大面积的壁面,增加了黏性耗散,且受到的阻力也更大,相同韦伯数的液滴碰壁后的最大铺展因数也越小。对Laan的公式进行了粗糙度的补充,得到了最大铺展因数与韦伯数、雷诺数及粗糙度的关系。壁面粗糙度对液滴铺展后的边缘造成扰动,使液滴更容易发生飞溅,铺展飞溅的临界韦伯数随着壁面粗糙度的增加而减小,且壁面粗糙度对小奥内佐格数流体的临界韦伯数影响更大。
Abstract:
The impact dynamics of droplets of different liquids onto solid surfaces with different roughness was investigated by using the highspeed microphotography. The influences of viscosity, surface tension and surface roughness on the nondimensional maximum spreading diameter and the critical Weber number for transition from spreading to splashing were discussed. The results showed that the nondimensional maximum spreading diameter decreases with the increasing liquid viscosity, and higher surface tension makes droplet more possible to retract after impacting on the solid surface. It was also observed that water is the only liquid that retracts in the experiment since it has obviously higher surface tension than other three liquids. The droplet needs to wet larger surface and will have higher viscous dissipation with the increase of surface roughness, leading to the decrease of the maximum spreading diameter at the same Weber number. The relationship of the maximum spreading diameter with Weber number, Ohnesorge number and surface roughness was obtained by introducing surface roughness to Laan’s equation. The “fingerlike” disturbance around the rim becomes more obvious with the increase of surface roughness, which makes the droplet more likely to splash after impact onto the solid surface and leads to lower critical Weber number for transition from spreading to splashing. In addition, the surface roughness influences the critical Weber number more significantly for the liquids with smaller Ohnesorge number.

参考文献/References:

[1]WORTHINGTON A M. On the forms assumed by drops of liquids falling vertically on a horizontal plate [J]. Proceedings of the Royal Society of London, 1876, 25(171/178): 261271.
[2]YARIN A L, WEISS D A. Impact of drops on solid surfaces: selfsimilar capillary waves, and splashing as a new type of kinematic discontinuity [J]. Journal of Fluid Mechanics, 1995, 283(283): 141173.
[3]RIOBOO R, TROPEA C, MARENGO M. Outcomes from a drop impact on solid surfaces [J]. Atomization and Sprays, 2001, 11(2): 155165.
[4]陆军军, 陈雪莉, 曹显奎, 等. 液滴撞击平板的铺展特征 [J]. 化学反应工程与工艺, 2007, 23(6): 506511.
LU Junjun, CHEN Xueli, CAO Xiankui, et al. Characteristic phenomenon and analysis of a single liquid droplet impacting on dry surfaces [J]. Chemical Reaction Engineering and Technology, 2007, 23(6): 506511.
[5]RANGE K, FEUILLEBOIS F. Influence of surface roughness on liquid drop impact [J]. Journal of Colloid and Interface Science, 1998, 203(1): 1630.
[6]魏明锐, 刘明嘉, 颜伏伍, 等. 液滴平壁铺展过程分析 [J]. 内燃机学报, 2012, 30(6): 538543.
WEI Mingrui, LIU Mingjia, YAN Fuwu, et al. Analysis of spreading process of droplet on flat surface [J]. Transactions of CSICE, 2012, 30(6): 538543.
[7]SCHELLER B L, BOUSFIELD D W. Newtonian drop impact with a solid surface [J]. AIChE J, 1995, 41(6): 13571367.
[8]CLANET C, BGUIN C, RICHARD D, et al. Maximal deformation of an impacting drop [J]. Fluid Mech, 2004, 517(517): 199208.
[9]UKIWE C, KWOK D. On the maximum spreading diameter of impacting droplets on wellprepared solid surfaces [J]. Langmuir, 2005, 21(2): 666673.
[10]曾祥辉, 杨方, 齐乐华, 等. 液滴喷射过程中碰撞的形态及流畅模拟分析 [J]. 西北工业大学学报, 2007, 25(4): 528532.
ZENG Xianghui, YANG Fang, QI Lehua, et al. Simulation of the shape and flow field of a droplet after impacting a substrate [J]. Journal of Northwestern Polytechnical University, 2007, 25(4): 528532.
[11]JOSSERAND C, THORODDSEN S T. Drop impact on a solid surface [J]. Annual Review of Fluid Mechanics, 2016, 48(1): 365391.
[12]LAAN N, DE BRUIN K G, BARTOLO D, et al. Maximum diameter of impacting liquid droplets [J]. Phys Rev, 2014, 2(4): 044018.

备注/Memo

备注/Memo:
科学挑战专题资助项目(JCKY2016212A501);国家自然科学基金资助项目(51206131)
更新日期/Last Update: