|本期目录/Table of Contents|

[1]汤松臻,王飞龙,童自翔,等.烟气余热回收换热器积灰抑制技术研究及参数优化[J].西安交通大学学报,2017,51(09):19-25.[doi:10.7652/xjtuxb201709003]
 TANG Songzhen,WANG Feilong,TONG Zixiang,et al.Numerical Study and Parameter Optimization for Suppressing Ash Deposition in Flue Gas Heat Exchanger[J].Journal of Xi'an Jiaotong University,2017,51(09):19-25.[doi:10.7652/xjtuxb201709003]
点击复制

烟气余热回收换热器积灰抑制技术研究及参数优化(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
19-25
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
Numerical Study and Parameter Optimization for Suppressing Ash
Deposition in Flue Gas Heat Exchanger
作者:
汤松臻王飞龙童自翔何雅玲
西安交通大学能源与动力工程学院,710049,西安
Author(s):
TANG SongzhenWANG FeilongTONG ZixiangHE Yaling
School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
关键词:
工业余热烟气换热器抑制积灰正交设计
Keywords:
industrial waste heat flue gas heat exchanger ash deposition suppression
orthogonal experiment
分类号:
TK124
DOI:
10.7652/xjtuxb201709003
摘要:
为了探讨能够减轻积灰的烟气余热回收换热器结构布置,提出了在换热管后加附属圆柱的方式,对6排管顺排布置换热器的流动传热及积灰特性进行了数值研究;其次,采用正交试验法分析了附属圆柱的各因素组合方式对换热器积灰及流动换热性能的影响,获得了影响积灰及换热性能的主次要因素;最终得出能够有效降低颗粒沉积率的较优组合结构参数。结果表明:对于沉积率指标,附属圆柱直径是最敏感的因素,附属圆柱与换热管间距次之,附属圆柱安装角影响最小,而影响换热性能的最敏感因素为附属圆柱安装角;综合考虑颗粒沉积率与换热性能,选择的最优方案是附属圆柱直径为6 mm、圆柱与换热管间距为4 mm、附属圆柱安装角为40°;将颗粒沉积率作为优化目标,按照正交设计的最优组合管束与光管管束相比,其颗粒沉积率降低约55.1%,能够实现工业烟气余热的高效回收利用。
Abstract:
An ash deposition suppression technique in flue gas heat exchanger was proposed, and the numerical study on the heat transfer performance and ash deposition behavior of a flue gas heat exchanger with a 6row tube arrangement was conducted. Then, the orthogonal tests were adopted to analyze the influence of the geometric parameters on the heat exchanger performance. The primary and secondary influencing sequences of the three factors were obtained, and then the optimal combination of the geometric parameters was determined for the suppression of ash deposition. The results showed that the factors influencing the ash deposition rate are arranged in a descending order as follows: the diameter of the added cylinders, the spacing between added cylinder and heat exchange tube, and the setting angle of added cylinder. However, the setting angle is the most significant factor for heat transfer performance. Considering the ash deposition rate and heat transfer performance, the optimal combination was determined as the diameter of 6 mm, spacing of 4 mm and setting angle of 40°. Taking the ash deposition rate as the optimization objective under optimal conditions, the ash deposition rate was decreased by 55.1% compared with the heat exchanger without added cylinders, which can realize efficient recovery and utilization of waste heat from industrial flue gas.

参考文献/References:

[1]KERN D Q, SEATON R E. A theoretical analysis of thermal surface fouling [J]. Brit Chem Eng, 1959, 4(5): 258262.
[2]HUANG L Y, NORMAN J S, POURKASHANIAN M, et al. Prediction of ash deposition on superheater tubes from pulverized coal combustion [J]. Fuel, 1996, 75(3): 271279.
[3]HAN H, HE Y L, TAO W Q, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction [J]. Int J Heat Mass Tran, 2014, 72: 210221.
[4]TOMECZEK J, WACLAWIAK K. Twodimensional modeling of deposits formation on platen superheaters in pulverized coal boilers [J]. Fuel, 2009, 88(8): 14661471.
[5]ZBOGAR A, FRANDSEN F, JENSEN P A, et al. Shedding of ash deposits [J]. Progr Energy Combust, 2009, 35: 3156.
[6]SOLTANI M, AHMADI G. On particle adhesion and removal mechanisms in turbulent flows [J]. J Adhes Sci Technol, 1994, 8(7): 763785.
[7]TONG Z X, LI M J, HE Y L, et al. Simulation of real time particle deposition and removal processes on tubes by coupled numerical method [J]. Appl Energ, 2017, 185: 21812193.
[8]TANG S Z, WANG F L, REN Q L, et al. Fouling characteristics analysis and morphology prediction of heat exchangers with a particulate fouling model considering deposition and removal mechanisms [J]. Fuel, 2017, 203: 725738.
[9]WANG F L, HE Y L, TONG Z X, et al. Realtime fouling characteristics of a typical heat exchanger used in the waste heat recovery systems [J]. Int J Heat Mass Transfer, 2017, 104: 774786.
[10]WANG F L, HE Y L, TANG S Z, et al. Parameter study on the fouling characteristics of the Htype finned tube heat exchangers [J]. Int J Heat Mass Transfer, 2017, 112: 367378.
[11]何雅玲, 汤松臻, 王飞龙, 等. 中低温烟气换热器气侧积灰, 磨损及腐蚀的研究 [J]. 科学通报, 2016(17): 18581876.
HE Yaling, TANG Songzhen, WANG Feilong, et al. Gasside fouling, erosion and corrosion of heat exchanger for middle and low temperature flue gas waste heat recovery [J]. Chinese Science Bulletin, 2016(17): 18581876.
[12]WRIGHT S, ANDREWS G, SABIR H. A review of heat exchanger fouling in the context of aircraft airconditioning systems, and the potential for electrostatic filtering [J]. Appl Therm Eng, 2009, 29(13): 25962609.
[13]STEHLK P. Conventional versus specific types of heat exchangers in the case of polluted flue gas as the process fluidA review [J]. Appl Therm Eng, 2011, 31(1): 113.
[14]BOURIS D, KONSTANTINIDIS E, BALABANI S, et al. Design of a novel, intensified heat exchanger for reduced fouling rates [J]. Int J Heat Mass Tran, 2005, 48(18): 38173832.
[15]MAVRIDOU S G, BOURIS D. Numerical evaluation of a heat exchanger with inline tubes of different size for reduced fouling rates [J]. Int J Heat Mass Tran, 2012, 55(19): 51855195.
[16]BOURIS D, PAPADAKIS G, BERGELES G. Numerical evaluation of alternate tube configurations for particle deposition rate reduction in heat exchanger tube bundles [J]. Int J Heat Fluid Flow, 2001, 22(5): 525536.
[17]陶文铨. 数值传热学 [M]. 2版. 西安: 西安交通大学出版社, 2001: 370376.
[18]WANG J, SHIRAZI S A. A CFD based correlation for erosion factor for longradius elbows and bends [J]. ASME J Energy Res Tech, 2003, 125(1): 2634.
[19]WERNER B T. A physical model of windblown sand transport [D]. Pasadena, USA: California Institute of Technology, 1987.

备注/Memo

备注/Memo:
国家重点研发计划资助项目(2016YFB0601100);高等学校学科创新引智计划资助项目(B16038)
更新日期/Last Update: