|本期目录/Table of Contents|

[1]王长安,Justin K. WATSON,Enette LOUW,等.耦合堆垛与孔径分布的高碱金属煤焦分子建模方法[J].西安交通大学学报,2017,51(09):1-10.[doi:10.7652/xjtuxb201709001]
 WANG Changan,Justin K.WATSON,Enette LOUW,et al.A Construction Strategy of Molecular Model Based on Coupling Stack and Pore Size Distribution for HighSodium Coal Char[J].Journal of Xi'an Jiaotong University,2017,51(09):1-10.[doi:10.7652/xjtuxb201709001]
点击复制

耦合堆垛与孔径分布的高碱金属煤焦分子建模方法(PDF)

《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]

卷:
51
期数:
2017年第09期
页码:
1-10
栏目:
出版日期:
2017-09-10

文章信息/Info

Title:
A Construction Strategy of Molecular Model Based on Coupling Stack
and Pore Size Distribution for HighSodium Coal Char
作者:
王长安12Justin K. WATSON3Enette LOUW2车得福1Jonathan P. MATHEWS2
1.西安交通大学能源与动力工程学院,710049,西安;2.美国宾州州立大学利昂能源与矿物工程系,
16802,美国宾州;3.美国宾州州立大学应用研究实验室,16802,美国宾州
Author(s):
WANG Chang’an12Justin K.WATSON3Enette LOUW2CHE Defu1Jonathan P.MATHEWS2
1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
2. The Department of Energy & Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
3. The Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
关键词:
煤焦分子建模孔径分布碱金属钠堆垛分布
Keywords:
coal char molecular model construction pore size distribution alkali metal sodium stacking distribution
分类号:
TK16
DOI:
10.7652/xjtuxb201709001
摘要:
针对表征高碱金属煤焦复杂物理化学结构特征的煤焦大分子三维(3D)模型的建模问题,以高分辨率投射电子显微镜(HRTEM)图像数据作为高碱金属煤焦分子模型的基本微观结构信息来源,提出了一种快速耦合堆垛和孔径分布的高碱金属煤焦大分子建模方法。基于Perl语言开发了相应的建模自编程序Fringe3D和Vol3D,实现了构建具有特定孔径分布和多种赋存形态Na分布的煤焦大分子模型。提出的煤焦大分子3D建模方法具有建模快速、可控性强和方便耦合复杂结构特征等特点,在高碱金属煤焦分子建模过程中考虑了不同赋存形态Na的分布。通过构建的具有特定碱金属分布的煤焦分子3D模型和分子反应动力学模拟,能够深入揭示煤焦热反应过程中Na迁移规律与微观反应机理。
Abstract:
Aiming at the modelling for the molecular representation of highsodium coal char to characterize the complex physicochemical properties, an imageguided construction strategy of molecular model based on coupling stack and pore size distributions for highsodium coal char (about 40 000 atoms) was proposed using HRTEM micrographs. Simplified modelling programs Fringe3D and Vol3D based on Perl language were developed. A macromolecular model of coal char with pore size distribution and various sodium compositions was constructed. The approach proposed in the present study is highly automatic and controllable, and easy to couple complex structures. Various sodium distributions were considered in the modelling of coal char. The constructed macromolecular 3D coal char model and molecular dynamics simulation are beneficial for further elucidating the migration behavior and microscopic reaction mechanisms of sodium.

参考文献/References:

[1]SONG G, SONG W, QI X, et al. Transformation characteristics of sodium of Zhundong coal combustion/gasification in circulating fluidized bed [J]. Energy Fuels, 2016, 30(4): 34733478.
[2]LI J, ZHU M, ZHANG Z, et al. Characterisation of ash deposits on a probe at different temperatures during combustion of a Zhundong lignite in a drop tube furnace [J]. Fuel Processing Technology, 2016, 144: 155163.
[3]ZHOU B, ZHOU H, WANG J, et al. Effect of temperature on the sintering behavior of Zhundong coal ash in oxyfuel combustion atmosphere [J]. Fuel, 2015, 150: 526537.
[4]LI X, BAI Z, BAI J, et al. Transformations and roles of sodium species with different occurrence modes in direct liquefaction of Zhundong coal from Xinjiang, northwestern China [J]. Energy Fuels, 2015, 29(9): 56335639.
[5]陈川, 张守玉, 刘大海, 等. 新疆高钠煤中钠的赋存形态及其对燃烧过程的影响 [J]. 燃料化学学报, 2013, 41(7): 832838.
CHEN Chuan, ZHANG Shouyu, LIU Dahai, et al. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process [J]. Journal of Fuel Chemistry and Technology, 2013, 41(7): 832838.
[6]张守玉, 陈川, 施大钟, 等. 高钠煤燃烧利用现状 [J]. 中国电机工程学报, 2013, 33(5): 112, 17.
ZHANG Shouyu, CHEN Chuan, SHI Dazhong, et al. Situation of combustion utilization of high sodium coal [J]. Proceedings of the CSEE, 2013, 33(5): 112, 17.
[7]ZHANG K, LI Y, WANG Z, et al. Pyrolysis behavior of a typical Chinese subbituminous Zhundong coal from moderate to high temperatures [J]. Fuel, 2016, 185: 701708.
[8]YAO Y, JIN J, LIU D, et al. Evaluation of vermiculite in reducing ash deposition during the combustion of highcalcium and highsodium Zhundong coal in a droptube furnace [J]. Energy Fuels, 2016, 30(4): 34883494.
[9]LI G, LI S, HUANG Q, et al. Fine particulate formation and ash deposition during pulverized coal combustion of highsodium lignite in a downfired furnace [J]. Fuel, 2015, 143: 430437.
[10]刘家利, 苏国庆, 张小宏, 等. 高碱金属煤煤灰沾污特性评价方法 [J]. 热力发电, 2016, 45(1): 913, 31.
LIU Jiali, SU Guoqing, ZHANG Xiaohong, et al. Evaluation method for ash fouling characteristics of coals with high alkali content [J]. Thermal Power Generation, 2016, 45(1): 913, 31.
[11]杨燕梅, 杨欣华, 刘青, 等. 灰化温度对准东煤灰组分分析的影响 [J]. 煤炭学报, 2016, 41(10): 24412447.
YANG Yanmei, YANG Xinhua, LIU Qing, et al. Effect of ashing temperature on analysis of Zhundong coal ash [J]. Journal of China Coal Society, 2016, 41(10): 24412447.
[12]张翔, 乌晓江, 陈楠. 新疆高碱煤沾污结渣特性中试试验研究 [J]. 锅炉技术, 2016, 47(4): 4447.
ZHANG Xiang, WU Xiaojiang, CHEN Nan, et al. Experimental study on Xinjiang highalkali ash deposition and slagging behavior in a 3 MWth pilotscale test facility [J]. Boiler Technology, 2016, 47(4): 4447.
[13]周文台, 何翔, 魏增涛, 等. 炉内燃烧温度对准东煤灰熔融特性影响的实验研究 [J]. 动力工程学报, 2016, 36(12): 945950.
ZHOU Wentai, HE Xiang, WEI Zengtao, et al. Effects of combustion temperature on the ash melting properties of Zhundong coal [J]. Journal of Chinese Society of Power Engineering, 2016, 36(12): 945950.
[14]付子文, 王长安, 翁青松, 等. 水洗对准东煤煤质特性影响的实验研究 [J]. 西安交通大学学报, 2014, 48(3): 5460.
FU Zhiwen, WANG Changan, WENG Qingshong, et al. Experimental investigation for effect of water washing on Zhundong coal properties [J]. Journal of Xi’an Jiaotong University, 2014, 48(3): 5460.
[15]刘大海, 张守玉, 涂圣康, 等. 五彩湾煤中钠在热解过程中的形态变迁 [J]. 燃料化学学报, 2014, 42(10): 11901196.
LIU Dahai, ZHANG Shouyu, TU Shengkang, et al. Transformation of sodium during Wucaiwan coal pyrolysis [J]. Journal of Fuel Chemistry and Technology, 2014, 42(10): 11901196.
[16]刘敬, 王智化, 项飞鹏, 等. 准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究 [J]. 燃料化学学报, 2014, 42(3): 316322.
LIU Jing, WANG Zhihua, XIANG Feipeng, et al. Models of occurrence and transformation of alkali metals in Zhundong coal during combustion [J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 316322.
[17]王智化, 李谦, 刘敬, 等. 准东煤中碱金属的赋存形态及其在热解过程中的迁移规律 [J]. 中国电机工程学报, 2014(1): 130135.
WANG Zhihua, LI Qian, LIU Jing, et al. Occurrence of alkali metals in Zhundong coal and its migration during pyrolysis process [J]. Proceedings of the CSEE, 2014(1): 130135.
[18]WANG C, JIN X, WANG Y, et al. Release and transformation of sodium during pyrolysis of Zhundong coals [J]. Energy Fuels, 2015, 29(1): 7885.
[19]LI G, WANG C, YAN Y, et al. Release and transformation of sodium during combustion of Zhundong coals [J]. Journal of the Energy Institute, 2016, 89(1): 4856.
[20]MATHEWS J P, VAN DUIN A, CHAFFEE A. The utility of coal molecular models [J]. Fuel Processing Technology, 2011, 92(4): 718728.
[21]FERNANDEZALOS V, WATSON J K, VANDER WAL R, et al. Soot and char molecular representations generated directly from HRTEM lattice fringe images using Fringe3D [J]. Combustion and Flame, 2011, 158(9): 18071813.
[22]VANDER WAL R L, TOMASEK A J, STREET K, et al. Carbon nanostructure examined by lattice fringe analysis of highresolution transmission electron microscopy images [J]. Applied Spectroscopy, 2004, 58(2): 230237.
[23]SHARMA A, KYOTANI T, TOMITA A. Direct observation of raw coals in lattice fringe mode using highresolution transmission electron microscopy [J]. Energy Fuels, 2000, 14(6): 12191225.
[24]ROUZAUD J N, CLINARD C. Quantitative highresolution transmission electron microscopy: a promising tool for carbon materials characterization [J]. Fuel Processing Technology, 2002, 77: 229235.
[25]SHIM H S, HURT R H, YANG N Y C. A methodology for analysis of 002 lattice fringe images and its application to combustionderived carbons [J]. Carbon, 2000, 38(1): 2945.
[26]LEYSSALE J M, DA COSTA J P, GERMAIN C, et al. Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images [J]. Carbon, 2012, 50(12): 43884400.
[27]LEYSSALE J M, DA COSTA J P, GERMAIN C, et al. An imageguided atomistic reconstruction of pyrolytic carbons [J]. Applied Physics Letter, 2009, 95(23): 231912.
[28]SHARMA A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images [J]. Fuel, 1999, 78(10): 12031212.
[29]WANG C, WATSON J K, LOUW E, et al. Construction strategy for atomistic models of coal chars capturing stacking diversity and pore size distribution [J]. Energy Fuels, 2015, 29(8): 48144826.
[30]张双全. 煤及煤化学 [M]. 北京: 化学工业出版社, 2013: 4344.
[31]SHARMA A, KYOTANI T, TOMITA A. Quantitative evaluation of structural transformations in raw coals on heattreatment using HRTEM technique [J]. Fuel, 2001, 80(10): 14671473.
[32]FERNANDEZALOS V. Improved molecular model generation for soot, chars, and coals: highresolution transmission elctrom microscopy lattice fringes reproduction with Fringe3D [D]. University Park, PA, USA: The Pennsylvania State University, 2010.
[33]LOUW E. Structure and combustion reactivity of inertiniterich and vitriniterich South African coal chars: quantification of the structural factors contributing to reactivity differences [D]. University Park, PA, USA: The Pennsylvania State University, 2012.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51506163)
更新日期/Last Update: